
Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 1

Arduino - premier contact

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 2

Sommaire
● IntroductionIntroduction
● 1 – Microprocesseur versus microcontrôleur1 – Microprocesseur versus microcontrôleur
● 2 - Arduino, qu’est-ce que c’est ?2 - Arduino, qu’est-ce que c’est ?
● 3 – L’interface de programmation, le C++3 – L’interface de programmation, le C++
● 4 – Le bouton poussoir, la LED, l’afficheur 7 4 – Le bouton poussoir, la LED, l’afficheur 7

segmentssegments
● 5 – Le bus I2C, l’afficheur texte5 – Le bus I2C, l’afficheur texte
● 6 – Les entrées analogiques, le potentiomètre, 6 – Les entrées analogiques, le potentiomètre,

quelques capteurs analogiquesquelques capteurs analogiques
● 7 – Le pont en H, le relais, l’opto-triac, 7 – Le pont en H, le relais, l’opto-triac,

l’alimentation 12V indépendantel’alimentation 12V indépendante
● 8 – Le moteur pas à pas8 – Le moteur pas à pas

● 9 – les sorties PWM, le servo de type modélisme9 – les sorties PWM, le servo de type modélisme
● 10 – Le moteur à courant continu, le moteur 10 – Le moteur à courant continu, le moteur

brushlessbrushless
● 11 – Les interruptions, mesure de rotation ou de 11 – Les interruptions, mesure de rotation ou de

distance avec un codeur incrémentaldistance avec un codeur incrémental
● 12 – Mesure de distance avec un capteur à 12 – Mesure de distance avec un capteur à

ultrasonsultrasons
● 13 – Communication entre deux microcontrôleurs 13 – Communication entre deux microcontrôleurs

par le bus I2C, la liaison sériepar le bus I2C, la liaison série
● 14 – L’heure et la date avec un module I2C 14 – L’heure et la date avec un module I2C

spécialiséspécialisé
● 15 – Des petits circuits électroniques sympas : 15 – Des petits circuits électroniques sympas :

portes logiques, basculeportes logiques, bascule
● 16 – Le GPS16 – Le GPS
● 17 – Liaison radio entre deux microcontrôleurs17 – Liaison radio entre deux microcontrôleurs

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 3

● Information préliminaireInformation préliminaire
● Cette présentation est accessible via le site idrolik.com

– rubrique documentation
● Elle sera mise à jour sur le site au fur et à mesure qu’elle

évoluera
● De cette manière, vous aurez accès aux exemples de

programmes pour vérifier que ça marche

http://idrolik.com/
https://idrolik.com/documentation.html

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 4

Introduction
● Aujourd’hui on a tous envie d’automatiser certaines tâchesAujourd’hui on a tous envie d’automatiser certaines tâches

– Domotique, alimentation du chat en absence, cibles pour le tir au pistolet, poêle à granulés, machine à
café ...

● Deux principales classes de circuits électroniques sont conçus pour faire tourner des programmes Deux principales classes de circuits électroniques sont conçus pour faire tourner des programmes
informatiquesinformatiques
– Les microprocesseurs et les microcontrôleurs

● Le microprocesseur est taillé pour réaliser des traitements lourdsLe microprocesseur est taillé pour réaliser des traitements lourds
– En termes de quantité de calculs
– En termes de quantité de mémoire nécessaire
– En termes de volumes de données manipulées (disques, cartes graphiques, réseaux, ...)
– En termes de qualité d’interface homme-machine (affichage, souris, pad ...)

● Le discret microcontrôleur est taillé pour une action efficace au plus près du matérielLe discret microcontrôleur est taillé pour une action efficace au plus près du matériel

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 5

Vocabulaire – bit & octet
● Un bit est l’information binaire minimaleUn bit est l’information binaire minimale

– Est égal à 0 ou à 1
– En électronique

● 0 correspond souvent à une tension électrique nulle (ou proche de zéro volt)
● 1 correspond souvent à une tension de 5 volts (ou proche de 5 volts)

● Un octet est un ensemble ordonné de 8 bitsUn octet est un ensemble ordonné de 8 bits
– C’est la quantité de base pour la mémorisation et le traitement d’informations

numériques
– On parle ...

de kilo octets (kilo = 103),
de méga octets (mega = 106),
de giga octets (giga = 109)
de tera octets (tera = 1012)

● Dans un octet, on parle de …Dans un octet, on parle de …
– Bit de poids faible (bit de droite)
– Bit de poids fort (bit de gauche)
– Un octet représente un nombre écrit en base 2 (deux signes 0 et 1)

Il peut prendre n’importe quelle valeur entière entre 0 et 255
01101010base 2 = 21 + 23 + 25 + 26 = 106

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 6

Vocabulaire – mémoire
● Imaginez que vous posiez 8 verres alignés sur une table, Imaginez que vous posiez 8 verres alignés sur une table,

tantôt couchés, tantôt debouttantôt couchés, tantôt debout
– En faisant ça, vous venez de créer une mémoire d’un octet

● Vous partez et vous revenez un an aprèsVous partez et vous revenez un an après
– Si personne n’a modifié l’état de votre mémoire, vous

retrouvez votre octet comme vous l’avez laissé
– Dit autrement, votre octet est resté en mémoire

● En électronique, on parle de :En électronique, on parle de :
– ROM : Read Only Memory (pour mémoriser un octet en ROM,

on peut 8 fils à 5 volts et dont certains sont coupés pour faire
des zéros)

– RAM : Random Access Memory (pour mémoriser un octet en
mémoire vive, on peut imaginer commander 8 bascules
électroniques dites « RS »)

● Pour un microcontrôleur, on parle de kilo octetsPour un microcontrôleur, on parle de kilo octets

Bascule RS :
S et R à zéro
S passe à 1, Q passe à 1
S repasse à zéro, Q reste à 1
R passe à 1, Q passe à zéro
R repasse à zéro, Q reste à zéro

Cellule « & » :
2 entrées à 1 ► sortie à 1
Sinon, sortie à zéro

« ● » :
Inversion de la sortie

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 7

Vocabulaire – liaison série
● Lorsqu’on veut envoyer des informations complexes, Lorsqu’on veut envoyer des informations complexes,

on constitue des trameson constitue des trames
– Une trame est souvent constituée par un grand

nombre d’octets
– Chaque trame commence par une en-tête qui indique

(entre autres) l’adresse du destinataire, et celle de
l’émetteur (ce qui permet au destinataire de
répondre)

– Chaque bit de chaque octet de la trame est « émis en
série »

● Principe de la liaison sériePrincipe de la liaison série
– Un circuit électronique émetteur

impose le niveau de tension (0 ou 1)
sur un fil à chaque top d’horloge

– On parle de fréquence d’horloge
– Le circuit récepteur lit à la même

fréquence le niveau de tension sur le
fil

– Les circuits émetteur et récepteur
peuvent avoir chacun leur horloge
(oscillateur à quartz) qu’ils règlent à
la même fréquence

– Ou la fréquence d’écriture des bits
sur la ligne peut être partagée par
l’émetteur sur un fil du bus

● Pour une liaison radio, c’est pareil …Pour une liaison radio, c’est pareil …
– Les niveaux de tension sur un fil

deviennent des trains d’ondes radio
émis en série dans l’air

Note : il y a 30 ans, les communications série
fonctionnaient à une fréquence de 9600 bauds (=
environ 10000 changements d’état / seconde).
Aujourd’hui, Ethernet est en Gigabits (plusieurs
millions de changements d’état / seconde)
Donc l’image devrait représenter un TGV ...

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 8

Vocabulaire – le bus
● Imaginons des prisonniers, chacun dans sa cellule ...Imaginons des prisonniers, chacun dans sa cellule ...

– Ils ne peuvent pas se voir, ils ne peuvent pas s’entendre

– Les cellules sont reliées entre elles par un
réseau de radiateurs connectés par des
tuyauteries métalliques

– Chacun peut taper sur son radiateur pour
émettre des messages par exemple avec le code morse

– Tous les prisonniers entendent lorsque l’un d’entre eux frappe sur son radiateur

– Si un prisonnier veut communiquer avec un autre, il fait précéder son message du numéro de la cellule du destinataire et de son
propre numéro de cellule.
Seul le destinataire prend le message pour lui, les autres l’ignorent (si on veut de la discrétion, le corps des messages peut être
chiffré)

● Analogie : ici, le réseau de radiateurs constitue un bus de données, toutes les informations transitent par ce canalAnalogie : ici, le réseau de radiateurs constitue un bus de données, toutes les informations transitent par ce canal
– Arbitrage à la mode Ethernet :

- Règle 1 : si quelqu’un est en train de parler, les autres se taisent
- Règle 2 : si deux personnes prennent la parole en même temps, le message est incompréhensible. Tout le monde se tait et initialise
un temps d’attente aléatoire avant de reprendre la parole … et la règle 1 s’applique

– Arbitrage à la mode USB : le maître de cérémonie distribue la parole, les autres ne parlent que lorsqu’ils y sont invités

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 9

Vocabulaire - Le bus
● Dans la suite, le mot « bus » est souvent utiliséDans la suite, le mot « bus » est souvent utilisé

● En informatique, un bus ...En informatique, un bus ...
– Est une liaison sur laquelle on peut connecter plusieurs circuits électroniques

● Sur une carte électronique, le bus peut prendre la forme de plusieurs conducteurs électriques en parallèle sur
lesquels sont directement connectés les interfaces des périphériques.

– Si un circuit « parle » sur le bus (= impose les niveaux de tensions sur les conducteurs du bus), les autres
circuits « se taisent » (= se contentent de « lire » les niveaux de tension)

– Les périphériques ne prennent en compte que ce qui leur est adressé

– Elle peut être constituée des liaisons point-à-point reliées en étoile(s) par des nœuds actifs (hubs ou
switches)

● Un format spécifique de connecteurs matériels est souvent prévu pour éviter qu’un circuit non compatible puisse être
connecté et brouille les communications sur le bus.

– Est un « lieu » où tous les dispositifs électroniques connectés peuvent être destinataires de messages

– Est associé à un protocole de communication dédié
● Le protocole définit et organise les échanges, avec un système d’adressage qui permet d’indiquer qui parle et qui est

destinataire

● Par opposition au bus, on parle de liaisons point à point.Par opposition au bus, on parle de liaisons point à point.
Avec une liaison point-à-point, pas besoin de dire à qui s’adresse le messageAvec une liaison point-à-point, pas besoin de dire à qui s’adresse le message

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 10

Exemple 1 – ETHERNET
● A l’origine Ethernet était un protocole qui utilisait un câble coaxial uniqueA l’origine Ethernet était un protocole qui utilisait un câble coaxial unique

– Toutes les machines étaient connectées dessus avec des prises vampires

– Adresses Ethernet uniques sur 48 bits (6 octets)

– Une adresse « broadcast » permettait à une machine de demander à la
cantonade qui fournit tel ou tel service.
Exemples « qui peut me fournir une adresse IP ? », ou « y-a-t-il des
imprimantes réseau ? » ...

– Protocole basé sur des trames avec en-tête indiquant (entre autres) les
adresses source et destination

– Les machines émettaient leurs trames en série sur le câble coaxial

– Lorsque deux machines émettaient en même temps, détection de la
collision par l’ensemble des machines

● Les machines stoppaient leur émission et initialisaient une temporisation aléatoire

● La première machine qui émettait occupait le bus, les autres attendaient que le bus se
libère

● Le câble coaxial constituait un busLe câble coaxial constituait un bus

– Par certains cotés, le WIFI (qui a son protocole spécifique) ressemble à
Ethernet coaxial

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 11

Exemple 1 - ETHERNET
● Aujourd’hui, Ethernet s’est moderniséAujourd’hui, Ethernet s’est modernisé

– 4 paires de fils « full duplex » (transmission simultanée dans
les deux sens sur chaque paire)

● Propagation des trames via des « switches » qui ...Propagation des trames via des « switches » qui ...
– transmettent les trames reçues sur un port vers les autres

ports
– apprennent de quel port arrivent les trames de chaque

adresse Ethernet afin de limiter le trafic

● Envoi toujours possible de trames « broadcast »Envoi toujours possible de trames « broadcast »
(= à destination de tous les dispositifs présents sur le (= à destination de tous les dispositifs présents sur le
réseau local)réseau local)
– Recherche serveur(s) DHCP (Dynamic Host Configuration

Protocol)
– Recherche d’imprimante(s), de scanner(s) ...

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 12

Exemple 2 - USB
● Clavier, souris, disque dur, clé USB (Universal Serial Bus) ...Clavier, souris, disque dur, clé USB (Universal Serial Bus) ...

● 4 conducteurs (hors alim du périphérique)4 conducteurs (hors alim du périphérique)
– 2 conducteurs D+ et D- pour transmettre les données en mode série (un sens

à la fois)

– 2 conducteur VCC et GND (tension alimentation et masse)

● Adresse USB sur 7 bits (127 périphériques maxi sur un bus USB)Adresse USB sur 7 bits (127 périphériques maxi sur un bus USB)

● Protocole basé sur des liaisons série suivant le principe maître-esclave (1 Protocole basé sur des liaisons série suivant le principe maître-esclave (1
maître, plusieurs esclaves)maître, plusieurs esclaves)

– Un esclave ne parle jamais spontanément, même pour se présenter.
Sa présence est détectée à la connexion par une résistance pull-up sur une
ligne de donnée

– Par exemple, lorsque l’équipement USB est un clavier, l’ordinateur lui fait
régulièrement appel pour savoir si une touche a été pressée (polling)

● Les hubs USB (si présents) sont interrogés périodiquement par le maître Les hubs USB (si présents) sont interrogés périodiquement par le maître
pour connaître les éventuels nouveaux périphériques connectés derrièrepour connaître les éventuels nouveaux périphériques connectés derrière

●

USB-C

USB-A

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 13

● 1 - Microprocesseur versus microcontrôleur1 - Microprocesseur versus microcontrôleur

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 14

Le microprocesseur
● Est plus complexe (nombre de transistors et structure interne) et plus performant que le microcontrôleurEst plus complexe (nombre de transistors et structure interne) et plus performant que le microcontrôleur

– Rapidité, capacité de calcul (coprocesseur arithmétique intégré), quantité de mémoire vive adressable

● Chauffe davantage, il a besoin d’un système de refroidissement (ventilateur et/ou circuit d’eau)Chauffe davantage, il a besoin d’un système de refroidissement (ventilateur et/ou circuit d’eau)

● Est l’élément central d’une carte mère, il s’interface matériellement :Est l’élément central d’une carte mère, il s’interface matériellement :
– Avec des circuits de mémoire via des bus d’adresse et de donnée

– Avec des périphériques via des bus d’entrées-sorties
● Carte graphique, disques durs, clavier, souris, Ethernet, Wifi...

● Fonctionne avec :Fonctionne avec :
– Un BIOS (Basic Input Output System) stocké dans le microprocesseur lui-même (firmware)

● permet l’utilisation du disque dur afin de charger le système d’exploitation dans la mémoire du microprocesseur (bus SATA ...)

– Un système d’exploitation qui souvent stocké sur un stockage de masse (disque dur...) et qui prend en charge
● Le fonctionnement en multitâche
● La gestion des périphériques (clavier, souris, imprimantes, écrans, scanners …)
● Il fournit les interfaces systèmes pour les logiciels applicatifs (affichage, Internet, ...)

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 15

Le microprocesseur

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 16

μprocesseur / carte mère
CPU : Central Processing Unit
 (Microprocesseur)
RAM : Random-Access Memory
 (Mémoire vive)
ROM : Read only memory
LAN : Local area network
 (typiquement : Ethernet)
USB : Universal Serial Bus
LPT : line printing terminal

Bus d’adresse : 32 conducteurs si
adressage sur 32 bits

Bus de données : 16 conducteurs
si les circuits manipulent des mots
de 16 bits

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 17

Carte mère
Emplacement prévu
pour enficher un
microprocesseur

Connecteurs entrées-sorties

Emplacements
prévus pour les
modules de mémoire

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 18

Raspberry Py
● Un ordinateur qui ressemble à une carte électroniqueUn ordinateur qui ressemble à une carte électronique

– Mémoire vive jusqu’à 8 Go, carte micro SD jusqu’à 128 Go qui sert de disque dur, pour héberger système d’exploitation et fichiers
– Tout ce qu’il faut pour connecter clavier et écran, communiquer et faire tourner des programmes applicatifs

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 19

Raspberry et Arduino
● Raspberry et Arduino : collaboration possibleRaspberry et Arduino : collaboration possible
● Raspberry Pi (le “cerveau”)Raspberry Pi (le “cerveau”)

– Mini ordinateur qui exécute un système Linux‑
– Gère l’écran, le clavier, le Wi Fi, Internet‑
– Exécute des programmes applicatifs
– Stocke des données et propose une interface

(écran, web)
● Arduino (les “réflexes”)Arduino (les “réflexes”)

– Microcontrôleur dédié au pilotage matériel
– Lit des capteurs (température, lumière,

bouton…)
– Commande des actionneurs (LED, relais,

moteurs, servos…)
– Démarre instantanément et fonctionne en

temps réel
● Échange d’informations :Échange d’informations :

– USB, UART, I2C

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 20

Avec le microcontrôleur
● Pas de carte mèrePas de carte mère
● Mise en œuvre simplifiéeMise en œuvre simplifiée

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 21

Le microcontrôleur
● Embarque tout ce qui est nécessaire à son fonctionnement dans un seul circuitEmbarque tout ce qui est nécessaire à son fonctionnement dans un seul circuit

– Processeur, mémoire, interfaces d’entrées-sorties

● Permet de séquencer automatiquement des opérations (programme informatique)Permet de séquencer automatiquement des opérations (programme informatique)
– Avec des variables, des boucles, des tests, des fonctions…

● Permet de communiquer avec d’autres circuits électroniques Permet de communiquer avec d’autres circuits électroniques
– USB, liaison série, bus I2C, ...

● Permet de récupérer des informations sur l’environnement :Permet de récupérer des informations sur l’environnement :
– Boutons poussoirs, capteurs fin-de-course, capteurs de proximité (inductifs, capacitifs,

ultrasons…), capteurs de température, de lumière, d’accélération, GPS…

● Permet de commander des organes de puissance (via un relais ou une électronique de Permet de commander des organes de puissance (via un relais ou une électronique de
puissance) :puissance) :

– Chauffage, lumière, sirène, moteur, vérin ...

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 22

Un microcontrôleur, c’est...
● Un circuit électronique micro programméUn circuit électronique micro programmé

– Le programme est préparé sur ordinateur puis
téléversé (ordinateur vers microcontrôleur) via
un câble USB

– Le programme s’exécute ensuite en boucle dès
la mise sous tension du microcontrôleur
(fonctionnement en autonomie)

● Un circuit électronique qui présente des Un circuit électronique qui présente des
broches (contacts)broches (contacts)
– Certaines broches peuvent être désignées

comme des entrées (à l’aide d’instructions dans
le programme)

– Certaines broches peuvent être désignées
comme des sorties (à l’aide d’instructions dans
le programme)

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 23

Un microcontrôleur, c’est...
● Un circuit électronique dont les broches désignées comme des Un circuit électronique dont les broches désignées comme des

entrées peuvent être lues par le programmeentrées peuvent être lues par le programme
– Une tension proche de 5 volts appliquée sur une broche d’entrée

numérique est interprétée comme un 1
– Une tension proche de 0 volt appliquée sur une broche d’entrée

numérique est interprétée comme un 0
– Certaines entrées peuvent être configurées pour lire une tension

analogique entre 0 et 5V
– Les entrées permettent de lire l’état de boutons poussoirs, de

capteurs …
● Un circuit électronique dont les tensions sur les broches Un circuit électronique dont les tensions sur les broches

désignées comme des sorties peuvent être mises à 0 ou à 1 par le désignées comme des sorties peuvent être mises à 0 ou à 1 par le
programmeprogramme

– Une sortie mise à 1 applique une tension de 5 volts sur la broche
correspondante

– une sortie mise à 0 applique une tension de 0 volt sur la broche
correspondante

– Les sorties permettent de commander des lampes, des moteurs …

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 24

En résumé
● Avec le microcontrôleur :Avec le microcontrôleur :

– Pas de clavier/souris comme l’ordinateur, plutôt des boutons poussoirs, des
potentiomètres, des boutons rotatifs, des claviers à code ...

– Pas d’affichage graphique évolué (fenêtres avec gestion devant/derrière…),
plutôt des LED, des afficheurs à une ou plusieurs lignes de caractères ...

– Pas de programme applicatif lourd, plutôt des programmes courts et astucieux,
le talent du programmeur s’exprime dans la concision et l’efficacité

– Pas de multitâche massif géré par un système d’exploitation, plutôt une boucle
de surveillance rapide et des traitements sur interruption ...

● Ses forces :Ses forces :
– Le microcontrôleur est aisé à mettre en œuvre
– Le microcontrôleur est adapté à la gestion d’automatismes au plus près du

matériel
– Le microcontrôleur peut communiquer en direct avec d’autres microcontrôleurs

et avec le monde extérieur via des modules électroniques additionnels
spécialisés

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 25

Exemple machine à café
● Entrées microcontrôleurEntrées microcontrôleur

– Bouton de sélection café long ou
café court

– Bouton poussoir de lancement d’un
cycle

– Capteur de niveau d’eau mini dans le
 réservoir d’eau

– Sonde de température d’eau dans
l’unité de chauffage

● Sorties microcontrôleursSorties microcontrôleurs
– Résistance de chauffage de l’eau
– Pompe pour pousser l’eau chaude

sous pression à travers la dosette

● Boucle programme microcontrôleurBoucle programme microcontrôleur
– Attendre l’appui sur le bouton « démarrage »
– Activer (mettre à 1) la sortie « chauffage de

l’eau »
– Attendre que l’eau soit chaude (surveillance

entrée sonde de température)
– Activer (mettre à 1) la sortie « pompe »
– Attendre X secondes suivant entrées « café

long / café court », attente interrompue si bouton
« démarrage » appuyé pendant le
fonctionnement

– Mettre à 0 la sortie « chauffage de l’eau »
– Mettre à 0 la sortie « pompe »
– Pendant le cycle, surveiller le capteur de niveau

d’eau et mettre les sorties à 0 si manque d’eau
détecté

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 26

● 2 - Arduino, qu’est-ce que c’est ?2 - Arduino, qu’est-ce que c’est ?

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 27

Arduino
● L’environnement Arduino intègreL’environnement Arduino intègre

– Des modules électroniques basés sur des microcontrôleurs
(Atmega …)

– Chaque module est équipé du petit nécessaire pour
fonctionner (oscillateur, connecteurs ...)

– Une interface logicielle de développement disponible sur
Linux et Microsoft Windows

● Qu’est-ce qu’Arduino a de particulier?Qu’est-ce qu’Arduino a de particulier?
– Arduino est largement répandu
– C’est à la fois une société et une vaste communauté open

source
– Le matériel n’est pas cher
– L’ensemble est très bien documenté, avec une communauté

importante
– L’interface de programmation et de téléversement est open

source, pratique et gratuite

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 28

Module : on trouve quoi ?

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 29

Arduino
● Propose plusieurs modules basés sur différents microcontrôleursPropose plusieurs modules basés sur différents microcontrôleurs
● 76 entrées-sorties pour Arduino Giga76 entrées-sorties pour Arduino Giga
● 14 entrées-sorties pour Nano14 entrées-sorties pour Nano

Giga

Mega

Due

NanoLeonardo

Uno

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 30

Le petit de la série

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 31

IDE Arduino
● L’IDE (Integrated Development Environment) L’IDE (Integrated Development Environment)

Arduino …Arduino …
– Est un logiciel open source à installer sur un

ordinateur
– Est une interface qui permet

● De rédiger les programmes
● De générer le code machine et de le téléverser sur le

module Arduino (via un câble USB)

– Est basé sur le compilateur open source GCC
(langage C/C++)

● Compilation = « traduction » du texte écrit en respectant la
syntaxe C/C++ en codes machine exécutables par le
microcontrôleur cible

● Il est nécessaire de préciser la carte Arduino avec laquelle
on travaille avant compilation et téléchargement
(génération du bon code machine compréhensible par le
microcontrôleur cible)

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 32

Démarrage avec Arduino
● Il faut un ordinateur (portable ou fixe)Il faut un ordinateur (portable ou fixe)
● Il faut télécharger l’IDE (Integrated Development Environment) Il faut télécharger l’IDE (Integrated Development Environment)

Arduino depuis le site Arduino : Arduino depuis le site Arduino : https://www.arduino.cc/en/softwarehttps://www.arduino.cc/en/software
– Une fois l’IDE Arduino installé sur l’ordinateur, la liaison

Internet n’est plus nécessaire

● Il faut acheter une carte Arduino, par exemple UNOIl faut acheter une carte Arduino, par exemple UNO
– Si vous êtes sympa, vous l’achetez chez Arduino pour faire

vivre la société et contribuer aux évolutions futures
– Vous pouvez aussi acheter un clone chinois

● Il faut acheter un câble USB pour connecter l’Arduino à l’ordinateurIl faut acheter un câble USB pour connecter l’Arduino à l’ordinateur
● Il faut acheter une plaque d’essai et des fils d’essai, c’est plus facileIl faut acheter une plaque d’essai et des fils d’essai, c’est plus facile
● Il faut l’envie d’essayer. Attention, Arduino peut devenir addictifIl faut l’envie d’essayer. Attention, Arduino peut devenir addictif

https://www.arduino.cc/en/software

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 33

● 3 - L’interface de programmation3 - L’interface de programmation

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 34

Écrire un programme
● C’est être clair sur ce qu’on veut automatiser avec le microcontrôleurC’est être clair sur ce qu’on veut automatiser avec le microcontrôleur

– Un organigramme et/ou un descriptif rédigé avec des phrases sont deux bon
moyens de se fixer un cahier des charges (= contrat fonctionnel)

– « Ce qui se conçoit bien s’énonce clairement et les mots pour le dire s’énoncent
clairement »
Ça va sans dire, mais ça va mieux en le disant, j’insiste

– Question structurante liée au micro-contrôleur : quelles informations va-t-on lire
(entrées) et quelles commandes va-t-on générer (sorties) ?

● Une bonne pratique : écriture et Une bonne pratique : écriture et test de test de programmes élémentairesprogrammes élémentaires
correspondant chacun à un couple correspondant chacun à un couple brique matériel + logicielbrique matériel + logiciel

– Choix et tests unitaires des capteurs que l’on pense utiliser
– Choix et tests unitaires des actionneurs pressentis avec leur électronique de

puissance (une sortie du microcontrôleur délivre quelques milliampères)
– Ça veut dire qu’il faut identifier des matériels candidats et étudier leur

datasheets. Datasheet pas claire = A FUIR.
Trop de fonctions intégrées = A FUIR
Capteurs compliqués à utiliser = A FUIR

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 35

Écrire un programme
● Une bonne pratique : Une bonne pratique : penser dès le début à la maintenabilitépenser dès le début à la maintenabilité

– On est très content de s’y retrouver des années après
● Lorsqu’on veut améliorer et/ou étendre le programme
● Lorsqu’un dispositif électronique qui n’est plus fabriqué tombe en panne et que l’on veut en utiliser un autre

– Démarche et logique doivent rester claires et lisibles (= pas de bidouillage)
● On commente abondamment : ce qui semble naturel lorsqu’on a la tête

dans le projet ne l’est plus forcément des années après
● On évite les pirouettes qui font gagner trois lignes de code : la lisibilité

devrait rester la priorité
● On regroupe ce qui va ensemble (données et fonctions) dans des objets

(= classes) aussi indépendants les uns des autres que possible

– L’interface avec chaque élément matériel devrait se limiter à un seul
objet logiciel (= une classe)

● Le remplacement d’un capteur ou d’un actionneur ne doit pas remettre en cause
l’ensemble du programme (impact aussi localisé que possible)

● Éviter les matériels multifonction : un matériel pour une fonction, c’est bien

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 36

Écrire un programme
● Apprendre à se servir de l’IDEApprendre à se servir de l’IDE

– Écrire du texte dans la fenêtre

– Lancer la compilation et le téléversement vers le
microcontrôleur (presse-bouton)

● Écrire un texte qui respecte la syntaxe du C++ :Écrire un texte qui respecte la syntaxe du C++ :
– Un programme est une suite d’instructions en C++ qui produit

le fonctionnement attendu

● Trouver et corriger les erreurs de compilation (= instruction C++ Trouver et corriger les erreurs de compilation (= instruction C++
→ codes machine)→ codes machine)

– Le compilateur détecte des variables non initialisées, des
incohérences de types, des dépassements de capacité ...etc…
dont l’origine n’est pas toujours facile à identifier

● Tester le fonctionnement et revenir sur le programme autant que Tester le fonctionnement et revenir sur le programme autant que
de besoin (essai – erreur)de besoin (essai – erreur)

– Le plan de test doit être aussi exhaustif que possible

– Logiciel instable = irritant

●

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 37

Spécificités C++ Arduino

● Avec Arduino, on ne peut pas :Avec Arduino, on ne peut pas :
– Dupliquer un processus (fonction « fork() ») : duplication du processus courant en deux processus indépendants vis-à-vis du

système d’exploitation, chacun avec son pointeur d’exécution, sa pile, son espace mémoire, son contexte.
Par exemple, une variable qui a reçu une valeur avant le fork() continue à vivre sa vie dans chaque processus (= avec une valeur
possiblement différente dans chaque processus)

– Faire appel au multi threading = traitements d’un même processus qui tournent indépendamment, ce qui permet d’exploiter le
caractère multi cœurs du microprocesseur tout en partageant le même espace mémoire (= les mêmes variables)

● Pourquoi ?Pourquoi ?
Parce que ces deux fonctions font appel au système d’exploitation de l’ordinateur Parce que ces deux fonctions font appel au système d’exploitation de l’ordinateur

– Sur un ordinateur, quand on ne peut plus augmenter la fréquence d’horloge d’un processeur (limitation liée à l’électronique), on
essaie de paralléliser les traitements sur plusieurs processeurs et/ou sur plusieurs cœurs

● Certaines fonctions proches du hardware sont spécifiques à l’ArduinoCertaines fonctions proches du hardware sont spécifiques à l’Arduino
– Exemples : « digitalWrite() » pour mettre 0 ou 1 sur une patte initialisée en sortie numérique, « analogRead() » pour lire la tension sur

une patte initialisée comme une entrée analogique...

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 38

Spécificités C++ Arduino
● Deux fonctions sont exécutées par le Deux fonctions sont exécutées par le

microcontrôleurmicrocontrôleur
● La fonction « setup() »La fonction « setup() »

– Exécutée une fois au démarrage du
microcontrôleur

● La fonction « loop() »La fonction « loop() »
– Exécutée en boucle tant que le microcontrôleur est

sous tension
● Une fois le programme implanté ...Une fois le programme implanté ...

– Le microcontrôleur n’a plus besoin du câble USB
(sauf si on souhaite s’en servir comme
alimentation)

– A chaque mise sous tension du microcontrôleur,
« setup() » est exécuté, puis « loop() » est exécuté
en boucle

class LED { // declaration d'une classe
 public :
 boolean etat_LED; // LED allumee ou eteinte
 LED(boolean etat_initial) { // Constructeur
 etat_LED = etat_initial;
 }
 void change () {
 if (etat_LED == true) {
 etat_LED = false;
 }
 else {
 etat_LED = true;
 }
 }
};

LED ma_LED = new LED(false); // instanciation

void setup() {
 /* setup() = fonction appelee une fois par au
 demarrage */
 pinMode(3, OUTPUT); // la patte 3 est une sortie
}

void loop() {
 /* loop() = fonction appelee en boucle par le
 microcontroleur */
 delay(1000); // attente 1000 ms = 1 s
 ma_LED.change();
 digitalWrite(3, ma_LED.etat_LED);
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 39

Affichage moniteur série
● Lorsque la carte Arduino est connectée à Lorsque la carte Arduino est connectée à

l’ordinateur via le câble USB …l’ordinateur via le câble USB …
– Elle est alimentée électriquement via l’USB
– Elle reçoit son code machine de l’ordinateur
– Des instructions permettent de renvoyer des

caractères vers la console de l’IDE Arduino via la
liaison USB

● Les commandes relatives au moniteur sérieLes commandes relatives au moniteur série
– Très utile pour rechercher des erreurs
– Ouvrir la fenêtre du moniteur série de l’IDE dans

« Outils »
– « Serial.begin(9600) ; » : initie la communication

série à 9600 bits / s (à placer dans « setup() »)
– « Serial.println("Hello World !") ; » : écrit « Hello

World ! » avec un saut de ligne à la fin

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 40

C++
● Commentaires :Commentaires :

– Dès qu’on trouve « // », le reste de la ligne est ignoré par
le compilateur

– Tout ce qui est encadré par « /* » et « */ » est ignoré par le
compilateur

● Un « ; » indique la fin d’une instructionUn « ; » indique la fin d’une instruction
– Plusieurs instructions peuvent se suivre sur une même

ligne, le séparateur est le « ; » mais ...
– Si on veut rendre le programme illisible, on met plusieurs

instructions à la suite sur la même ligne

● Les blocs sont encadrés par « { } »Les blocs sont encadrés par « { } »
● Une bonne pratique : « outils » + « formatage Une bonne pratique : « outils » + « formatage

automatique »automatique »
– En user et en abuser

class LED { // declaration d'une classe
 public :
 boolean etat_LED; // LED allumee ou eteinte
 LED(boolean etat_initial) { // Constructeur
 etat_LED = etat_initial;
 }
 void change () {
 if (etat_LED == true) {
 etat_LED = false;
 }
 else {
 etat_LED = true;
 }
 }
};

LED ma_LED = new LED(false); // instanciation

void setup() {
 /* setup() = fonction appelee une fois par au
 demarrage */
 pinMode(3, OUTPUT); // la patte 3 est une sortie
}

void loop() {
 /* loop() = fonction appelee en boucle par le
 microcontroleur */
 delay(1000); // attente 1000 ms = 1 s
 ma_LED.change();
 digitalWrite(3, ma_LED.etat_LED);
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 41

Variables en C++
● En C++, on déclare les variables qu’on va utiliserEn C++, on déclare les variables qu’on va utiliser

– Une variable permet de stocker un type d’information
– Les variables peuvent être de plusieurs types

● Booléen (vrai ou faux), Entier, Réel (simple ou double précision),
Caractère

int compteur; compteur = 12 ;
float largeur ; largeur = 32,7 ;
char carac ; carac = ‘c’ ; carac = 99 ;

● Classes = objets composites

– Un nom de variable est une suite de caractères (a, titi3,
perimetre33, h_2_v …)

● Pas de blancs (mettre des « _ » à la place si on veut un séparateur), pas
de caractères accentués, pas de chiffre en première position, pas
d’opérateurs… Globalement, pas de fantaisie, ça évite les ennuis

● Bonne pratique : déclarer toutes les variables en début de Bonne pratique : déclarer toutes les variables en début de
programmeprogramme

– Dans un fichier à part si besoin
(directive de préprocesseur « #include nom_fichier »)

–

class LED { // declaration d'une classe
 public :
 boolean etat_LED; // LED allumee ou eteinte
 LED(boolean etat_initial) { // Constructeur
 etat_LED = etat_initial;
 }
 void change () {
 if (etat_LED == true) {
 etat_LED = false;
 }
 else {
 etat_LED = true;
 }
 }
};

LED ma_LED = new LED(false); // instanciation

void setup() {
 /* setup() = fonction appelee une fois par au
 demarrage */
 pinMode(3, OUTPUT); // la patte 3 est une sortie
}

void loop() {
 /* loop() = fonction appelee en boucle par le
 microcontroleur */
 delay(1000); // attente 1000 ms = 1 s
 ma_LED.change();
 digitalWrite(3, ma_LED.etat_LED);
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 42

● Petit tour sur les variablesPetit tour sur les variables
– L’espace mémoire est compté, donc on compte

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 43

Entier
● Déclaration d’une variable entière : « int i ; » ou « long i »Déclaration d’une variable entière : « int i ; » ou « long i »

– La déclaration « long i » ; correspond à un entier long

– Dans le code machine généré par le compilateur, une zone est réservée
en mémoire (4 octets dans l’exemple ci-contre, 1 octet = 8 bits)

– A chaque fois qu’on affecte une valeur à i, on modifie cette zone mémoire

● Un entier codé sur 4 octets peut représenter un entier entre -(2Un entier codé sur 4 octets peut représenter un entier entre -(23131 – 1) et – 1) et
+(2+(23131 - 1) - 1)

– Dans la réalité, la valeur négative est codée en complément à deux
(inversion bit à bit +1, dépassement ignoré).
Ou comment transformer une soustraction en addition

● En C++ on peut définir un pointeur vers un entier avec la déclaration « int En C++ on peut définir un pointeur vers un entier avec la déclaration « int
*p ; »*p ; »

– int i, *p ; // declaration d’un entier i et d’un pointeur p vers un entier
p = &i ; // l’expression « &i » est l’adresse de i
*p = 12 ; // l’adresse pointee par p reçoit 12
// i vaut maintenant 12

– Note : un tableau de pointeurs peut être très efficace pour trier des
données volumineuses. L’intérêt des pointeurs est limité pour les entiers

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 44

Réel
● Déclaration d’une variable réelle : « float a ; » ou Déclaration d’une variable réelle : « float a ; » ou

« double a; »« double a; »
● Un réel est codé sur 4 octets avec un signe, un Un réel est codé sur 4 octets avec un signe, un

exposant et une mantisseexposant et une mantisse
– Signe du réel : 1 bit (0 = positif)
– Exposant : 8 bits, valeur positive à laquelle on retire

systématiqement 127 → exposant positif ou négatif
– Mantisse : 23 bits (bits derrière « 1, » implicite)

● Exemple : 5,75 en décimal s’écrit 101.11 en binaireExemple : 5,75 en décimal s’écrit 101.11 en binaire
– En base 10, chaque décimale divise la précédente par 10

0,1 = 1/10
0,01 = 1/100

– En binaire, chaque « décimalebase 2 » divise la précédente
par 2
0,1base 2 = 1/2 = 0,5
0,01base 2 = 1/4 = 0,25

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 45

Caractère
● Chaque caractère est associé à Chaque caractère est associé à

un code sur 7 bitsun code sur 7 bits
– Le 8eme bit peut être utilisé

comme bit de parité (= bit de
contrôle) ou pour extension

● ASCII (American Standard Code ASCII (American Standard Code
for Information Interchange)for Information Interchange)

– De 0 à 31 inclus : codes de
contrôle
ATTENTION : pas forcément
visibles à l’affichage si présents

– Exemple : les lignes des fichiers
textes se terminent par un
retour-chariot (13) et un line-feed
(10).
(références à nos ancêtres les
machines à écrire)

● Bonne pratique :Bonne pratique :
– Rester sur les caractères du

code ASCII (32 ≤ c < 127)
– Éviter les caractères accentués

(codes > 127) et les jeux de
caractères spécifiques à chaque
pays

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 46

Caractère
● Un caractère consomme un octet en Un caractère consomme un octet en

mémoiremémoire
– On verra plus tard qu’on peut stocker une

chaîne de caractères sous la forme d’un
tableau de caractères

● Note : un booleen (vrai ou faux) est stocké Note : un booleen (vrai ou faux) est stocké
comme un caractèrecomme un caractère
– 0 = faux
– Différent de 0 = vrai

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 47

Tableaux
● Chaque type de variable peut donner lieu à un Chaque type de variable peut donner lieu à un

tableautableau
– Utilisé pour manipuler un ensemble de données

de même nature (éléments numérotés)
– Pour chaque tableau, on indique le nombre

d’éléments
– Un tableau commence à 0
– Chaque élément d’un tableau est utilisé comme

une variable

● Tableau d’éléments de type « class »Tableau d’éléments de type « class »
– Plus simple si le constructeur de la classe

n’attend pas d’arguments
– Commode pour manipuler les informations

d’une collection d’objets similaires (capteurs,
moteurs pas-à-pas ...)

int i, Toto[10];

for (i = 0; i < 9; i++) {
Toto[Indice] = 0;

}

class LED { // declaration d'une classe
 public :
 boolean etat_LED; // LED allumee ou eteinte
 LED() { // Constructeur
 etat_LED = false;
 }
 void change ()
 {
 if (etat_LED == true) { // == comparaison
 etat_LED = false; // = affectation
 }
 else {
 etat_LED = true;
 }
 }
};

LED ma_LED[5];

for (i = 0; i < 5; i++) {
 ma_LED[i].change();
 }

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 48

Chaîne de caractères
● Souvent, on veut afficher des messages, sous la forme de chaînes de caractères Souvent, on veut afficher des messages, sous la forme de chaînes de caractères

(par exemple l’heure, ou une température, ou encore un message d’erreur)(par exemple l’heure, ou une température, ou encore un message d’erreur)

● Il existe une classe « String » qui permet de manipuler des chaînes de caractèresIl existe une classe « String » qui permet de manipuler des chaînes de caractères
– Cette classe s’occupe de réserver dynamiquement de l’espace mémoire

● Perso, je préfère la méthode classique qui traite les chaînes de caractères comme Perso, je préfère la méthode classique qui traite les chaînes de caractères comme
des tableaux de caractèresdes tableaux de caractères
Pourquoi ? Parce que j’aime bien maîtriser la quantité de mémoire utiliséePourquoi ? Parce que j’aime bien maîtriser la quantité de mémoire utilisée

– La fin de la chaîne de caractères est identifiée par un caractère NULL (= 0) qui suit
le dernier caractère de la chaîne

– Bien sûr, le caractère NULL doit faire partie de la réservation en mémoire

– Exemple : la chaîne de caractères « Hello » nécessite la réservation en mémoire
d’un tableau de caractères d’au moins 6 éléments

– char message[10] ; // reservation pour une chaine de 9 caracteres max
message[0] = ‘H’ ; // elements du tableau numerotes a partir de 0
message[1] = ‘e’ ;
…
message[5] = ‘o’ ;
message[6] = ‘\0’ ; // caractere NULL pour marquer la fin de la chaine

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 49

Chaîne de caractères
● La commande magique : « sprintf() ; »La commande magique : « sprintf() ; »

– char b[11], c[51] ;
int age ;
float poids, taille ;

strcpy(b, "je pese") ;
age = 60 ;
poids = 86.3 ;
taille = 1.8 ;

sprintf(c, "J’ai %d ans,%s %f kg, taille : %f m",
 age, b, poids, taille) ;

● Exemple ci-dessus :Exemple ci-dessus :
– Écrit dans le tableau « c » la chaîne de caractères

"J’ai 60 ans, je pese 86,3 kg, taille : 1,8 m"
– L’entier 60 est devenu deux caractères : ‘6’ et ‘0’
– Le caractère ‘\0’ est ajouté en fin de tableau

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 50

Classe
● Une classe permet de regrouper des Une classe permet de regrouper des

variables et des méthodesvariables et des méthodes
– Les variables peuvent être des entiers,

des réels, des caractères, des tableaux,
des instanciations d’autres classes …

– Les méthodes sont des fonctions
● Une fonction exécute un ensemble

d’instructions
● Une fonction peut attendre des arguments

(de différents types) … ou pas.
● Une fonction peut retourner une valeur …

ou pas (void).
● Une fonction se déclare sous la forme :

 « int ma_fonction(int i, float a, …)
{ instructions… } »

● Une classe peut être définie à partir d’une Une classe peut être définie à partir d’une
autre (héritage)autre (héritage)

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 51

Classe
● Pour une classe (ici « LED »), une zone mémoire Pour une classe (ici « LED »), une zone mémoire

est réservée pour les éléments constants et est réservée pour les éléments constants et
partagée par toutes les instancespartagée par toutes les instances
– En général, les éléments constants sont du code,

on peut aussi définir des constantes (comme π)
– Ici, un espace mémoire pour le code de la fonction

« LED () »
● Fonction de même nom que la classe = constructeur

(exécuté automatiquement à la création de chaque
instanciation)

– Ici, un autre espace mémoire pour le code de la
fonction « change() »

● Pour chaque instance d’une classe (ici Pour chaque instance d’une classe (ici
« ma_LED »), un espace mémoire indépendant est « ma_LED »), un espace mémoire indépendant est
réservé réservé pour les variables de chaque instanciation pour les variables de chaque instanciation
de « LED »de « LED »
– Ici : « etat_LED »

class LED { // declaration d'une classe
 public :
 boolean etat_LED; // LED allumee ou eteinte
 LED(boolean etat_initial) { // Constructeur
 etat_LED = etat_initial;
 }
 void change () {
 if (etat_LED == true) {
 etat_LED = false;
 }
 else {
 etat_LED = true;
 }
 }
};

LED ma_LED = new LED(false); // instanciation

void setup() {
 /* setup() = fonction appelee une fois par au
 demarrage */
 pinMode(13, OUTPUT); // la patte 13 est une sortie
}

void loop() {
 /* loop() = fonction appelee en boucle par le
 microcontroleur */
 delay(1000); // attente 1000 ms = 1 s
 ma_LED.change();
 digitalWrite(13, ma_LED.etat_LED);
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 52

Pointeurs
● En C++, pour chaque type, on peut définir des pointeursEn C++, pour chaque type, on peut définir des pointeurs

– Exemple :
int i ; // i est une variable entière
int *p ; // p est un pointeur vers une variable entière
p = &i ; // p reçoit l’adresse de i
*p = 4 ; // écrit 4 dans i

– Le pointeur conserve en mémoire … une adresse mémoire

● Utile lorsqu’on veut trier par remontée de bulle des objets qui occupent Utile lorsqu’on veut trier par remontée de bulle des objets qui occupent
beaucoup d’espace mémoirebeaucoup d’espace mémoire

– Tri par remontée de bulle : comparaisons deux à deux des objets et inversion si
mal placés

– Espace mémoire occupé par une instance de classe « mon_objet » =
« sizeof(mon_objet) »

– Il est plus aisé d’intervertir les contenus de deux pointeurs en mémoire que
d’intervertir le contenu de deux objets occupant chacun beaucoup d’espace
mémoire

● On peut aussi définir des pointeurs vers des fonctionsOn peut aussi définir des pointeurs vers des fonctions

– Une fonction est du code machine stocké en mémoire

– Un pointeur vers ce code contient l’adresse du code de la fonction

– Utile lorsqu’on veut passer demander à une fonction d’utiliser la (les) fonction(s)
fournie(s) en argument(s)

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 53

● Petit tour sur les opérations de basePetit tour sur les opérations de base
– Sans ça, pas de programme

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 54

Les opérations de base
● De base, le microcontrôleur saitDe base, le microcontrôleur sait

– Aditionner (« + »), soustraire (« - »), multiplier (« * »), diviser (« / »)

● Ces opérations peuvent s’appliquerCes opérations peuvent s’appliquer
– Aux entiers (« int » ou « long »), aux réels (« float » ou « double »), aux

caractères (« char »)

● Si une opération dépasse la capacité des variablesSi une opération dépasse la capacité des variables
– Vous aurez un résultat arrondi

(exemple l’entier 11 divisé par 2)

– Ou une erreur de compilateur ou d’exécution
(exemple : division par zéro)

– Ou encore un déroulement sans erreur d’exécution mais avec un résultat
potentiellement non attendu
(exemple soustraction de 1.25 x 1015 – 1,37 x 10-15)

● Pour d’autres opérations, il faudra utiliser des fonctionsPour d’autres opérations, il faudra utiliser des fonctions
– Soit des fonctions toutes faites (exemple « pow(x,y) » pour xy)

– Soit des fonctions que vous aurez faites vous-mêmes

●

// factorielle(5) = 1 x 2 x 3 x 4 x 5
int factorielle(int n) {
 int k ;
 if (n < 1) {
 return(-1) ; // erreur
 }

 if (n == 1) {
 return(n) ;
 }
 else { // n est superieur a 1
 k = n * factorielle(n – 1) ;
 return(k) ;
 }
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 55

Les tests
● « if (condition) { instructions … } »« if (condition) { instructions … } »

● « if (condition) { instructions… }« if (condition) { instructions… }
 else { instructions … } » else { instructions … } »

● Condition :Condition :

– « (a > b) », « (a < b) », « (a == b) »
 « (a <= b) », « (a >= b) », « (a != b) »
 « (strcmp(s1,s2) == 0) »

– Fonction qui retourne un booléen (vrai ou faux)

– Attention : « = » affectation, « == » comparaison

● Condition1 Condition1 ouou condition 2 : « || » condition 2 : « || »

– if ((a > b) || (c < 3)) { instructions … }

● Condition 1 Condition 1 etet condition 2 : « && » condition 2 : « && »

– if ((a > b) && (c < 3)) { instructions … }

● On peut mixer :On peut mixer :

– If ((a > b) || ((c > d) && (e == 0))) { instructions … }

void setup() {
 pinMode(5, INPUT); // la broche 5 est une entree
 pinMode(6, OUTPUT); // la broche 6 est une sortie
 }

void loop() {
 If (digitalRead(5) == HIGH) { // si 5V sur la broche 5
 digitalWrite(6, LOW); // on met la broche 6 a 0V
 } else {
 digitalWrite(6, HIGH); // sinon, on met la broche 6 a 5V
 }
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 56

Les boucles
● Boucle « for »Boucle « for »

– « for (i=0 ; i<10 ; i=i+1)
 { instructions ... } »

– i commence à 0,
on exécute les instructions tant que i < 10,
i = i+1 avant de passer au tour suivant

● Boucle « while »Boucle « while »
– Tant que la condition est vraie on exécute le

bloc d’instructions
– « while (a > b) { instructions … }

● Boucle « do while »Boucle « do while »
– Exécuter le bloc d’instructions et vérifier la

condition avant de l’exécuter à nouveau
– « do { instructions … } while (i == 0) ; »

int i;
boolean k[3];

void setup() {
 for (i = 3; i < 6; i++) {
 pinMode(i, INPUT); // la broche i est une entree
 } // les broche 3, 4 et 5 sont des entrees
 pinMode(6, OUTPUT); // la broche 6 est une sortie
}

void loop() {
 do {
 for (i = 3; i < 6; i++) {
 k[i - 3] = digitalRead(i); // lecture etat broche i
 }
 } while ((k[0] == LOW) && (k[1] == LOW) && (k[2] == LOW));
 digitalWrite(6, HIGH); // on met la broche 6 a 5V
 delay(1000); // on attend 1 s
 digitalWrite(6, LOW); // et on remet la broche 6 a 0V
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 57

Opérations bit à bit
● « & » : et« & » : et

– Permet par exemple de tester
facilement si un bit d’un octet est à 1

– Ou de mettre un bit d’un octet à 0

● « | » : ou inclusif« | » : ou inclusif
– Permet par exemple de mettre un bit

d’un octet à 1

● « ^ » : ou exclusif« ^ » : ou exclusif

● « ~ » : non« ~ » : non

● « >> » : décalage à droite« >> » : décalage à droite
– char c ;

c = c & 0b11111000 ; // met les
// 3 bits de poids faible à 0
c = c >> 3 ; // decale les 5 bits de
gauche vers la droite

● « << » : décalage à gauche« << » : décalage à gauche

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 58

Fonctions
● Une fonction est une séquence de code destinée à être Une fonction est une séquence de code destinée à être

appelé régulièrementappelé régulièrement
– Le processeur exécute le code en cours (qui peut déjà

être celui d’une fonction)
– Il tombe sur un appel à une fonction

● Avant d’aller exécuter le code en question, il pose l’adresse actuelle
du pointeur d’exécution sur la pile

– Positionnement du pointeur d’exécution au début du code
de la fonction puis exécution

● À la fin de l’exécution de la fonction, récupération de l’adresse de
retour sur la pile

– Poursuite de l’exécution du code initial
● Une fonction peut attendre des arguments et retourner une Une fonction peut attendre des arguments et retourner une

valeurvaleur
– Déclaration : « float surface(float a, float b) { … } »

Appel : « s = surface(12.5 , 45.8) ; »
– Déclaration : « void allume_LED() { … } »

Appel : « allume_LED() ; }

float surface(float largeur, float longueur) {
 double S ; // variable locale à la fonction

 S = largeur * longueur ;
 return(S) ;
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 59

Pointeurs de fonction
● Un pointeur peut être passé en argument à une fonctionUn pointeur peut être passé en argument à une fonction

– La fonction peut alors écrire à l’adresse du pointeur …
– … ou exécuter le code qui se trouve à l’adresse passée

● Déclaration d’un pointeur vers une fonctionDéclaration d’un pointeur vers une fonction
– « float (*toto)(float a, float b) ; »

● Définit un pointeur toto qui peut recevoir l’adresse d’une fonction
qui attend 2 arguments réels et retourne un réel

– ATTENTION : une fonction « ordinaire » et une méthode
d’une classe sont traitées différemment, et là, ça se
complique

● La fonction peut lancer le traitement que lui a passé le La fonction peut lancer le traitement que lui a passé le
code appelantcode appelant

● Mon conseil :Mon conseil :
– Utiliser les pointeurs de fonctions avec parcimonie

(complexifie l’écriture, surtout s’agissant des méthodes de
classes)

– Se débrouiller avec les valeurs retournées : plus simple et
plus lisible.

void teste_bouton(int pin, void (*action)()) {
 if (digitalRead(pin) == LOW) {
 action();
 }
}

Ou comment appeler une fonction en
lui passant une action à exécuter

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 60

● Le bouton poussoir, la LED, l’afficheur 7 Le bouton poussoir, la LED, l’afficheur 7
segmentssegments
– Premiers programmes
– Premiers branchements

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 61

Bouton poussoir, LED
● On veut réaliser un montage avec :On veut réaliser un montage avec :

– Un bouton poussoir

– Une LED

● Objectif du montage :Objectif du montage :
– À chaque fois qu’on appuie sur le bouton

poussoir ...

– … on fait clignoter 3 fois une LED

● Étape 1 :Étape 1 :
– On jette un coup d’œil sur la carte Arduino

pour décider sur quelles broches on va
brancher le bouton poussoir et la LED

– On a besoin de deux broches numériques,
on en a 14 à disposition (0 à 13)
►on choisit la broche 12 pour le bouton
poussoir et la broche 13 pour la LED (deux
broches qui ne savent faire que du
numérique de base sur cette carte)

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 62

Connexion physique
● Connexion du bouton poussoirConnexion du bouton poussoir

– Une résistance de pull-up force le 5V lorsque le
bouton poussoir ne force pas le potentiel à zéro

● Note : « pinMode(pin, INPUT_PULLUP) » active une
résistance pull-up interne

– Bouton poussoir appuyé ► entrée 12 = 0

● Connexion de la LEDConnexion de la LED
– On considère que notre LED passante va installer une

tension d’1,2V à ses bornes

– On veut faire passer 10 à 15 mA dedans

– On va mettre une résistance en série avec la LED

– U = R x i
U tension en volts (3,8V pour nous)
R : résistance en ohm (ce qu’on cherche)
i : intensité ampère (0,0125 A pour nous)

– R = U / i = 3,8 / 0,0125 = 300 Ω

● Note : sur bon nombre de cartes Arduino, une LED Note : sur bon nombre de cartes Arduino, une LED
indique l’état de la pin 13indique l’état de la pin 13

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 63

Rebonds bouton poussoir
● Lorsqu’on utilise un contacteur mécanique …Lorsqu’on utilise un contacteur mécanique …

– On a des chances d’avoir des rebonds au niveau du contact
– Pendant quelques millisecondes, le signal peut être instable

● Le microcontrôleur fonctionne à plusieurs MHzLe microcontrôleur fonctionne à plusieurs MHz
– Le microcontrôleur boucle suffisamment rapidement pour

« voir » des états hauts et bas pendant les rebonds
– La programmation doit en tenir compte
– Lorsque l’état du bouton poussoir change (appui puis

relâchement), ne pas tenir compte de ce qui se passe dans les
millisecondes qui suivent

● Bonne pratique :Bonne pratique :
– C’est un humain qui agit sur le bouton poussoir.

Il est donc raisonnable de penser que même pour un excité
du bouton poussoir, deux appuis successifs seront espacés
de plus d’un quart de seconde

– Il faut choisir à quel changement d’état on réagit (appui ou
relâchement)

– « Appui + relâchement rapide » et « appui + maintien +
relâchement » peuvent être discriminés par le programme

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 64

Programme minimaliste
● Ce programme est simple et il fonctionneCe programme est simple et il fonctionne

– Si on laisse le bouton appuyé, il recommence,
c’est bien

● Pour autant il a un gros défaut : il est peu Pour autant il a un gros défaut : il est peu
extensibleextensible
– 1)- il utilise l’instruction « delay() » qui

monopolise le microcontrôleur pour de l’attente
● Qu’est-ce que je fais si j’ai besoin de surveiller un autre

capteur pendant ce temps là ?
Ou un autre bouton, ou encore générer une action ?

– 2)- il ne traite pas le bouton poussoir comme
une brique technologique

● Test et validation de la brique technologique une bonne
fois pour toutes

● Réutilisation et maintenance simplifiées si tous les
boutons poussoirs sont traités de la même manière

Pas bien

Programme1

int i;

void setup() {
 pinMode(12, INPUT); // broche 12 : entree
 pinMode(13, OUTPUT); // broche 13 : sortie
}

void loop() {
 if (digitalRead(12) == LOW) { // si broche 12 a 0V
 for (i = 0; i < 3; i++) { // on clignote 3 fois
 digitalWrite(13, HIGH); // broche 13 a 5V
 delay(1000) ; // attente 1 seconde
 digitalWrite(13, LOW); // broche 13 a 0V
 delay(1000) ; // attente 1 seconde
 }
 }
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 65

Clignotement « passant »
● La fonction millis()La fonction millis()

– N’attend pas d’arguments

– Retourne le nombre de millisecondes depuis la mise sous
tension (unsigned long)

– sizeof(unsigned long) = 4 octets
232 – 1 = 4294967295 ms = 49,7 jours

● Bonne pratique : rendre le programme « passant »Bonne pratique : rendre le programme « passant »
– Si c’est le moment on agit, sinon on passe, mais on fait tout

pour ne pas bloquer le déroulement

– Par exemple :
Faire clignoter une LED peut se résumer à un test à chaque
boucle

● Est-ce le moment de changer l’état de la LED ?
Si oui, on change son état
Sinon on verra au prochain tour

– En faisant ça, chaque boucle permet de tester plusieurs
capteurs et plusieurs boutons, tout en faisant clignoter la
LED

unsigned long dernier_changt_LED, t;
Boolean etat_LED ;

void setup() {
 dernier_changt_LED = 0 ;
 pinMode(13, OUTPUT);
 etat_LED = LOW;
 digitalWrite(13, etat_LED);
}

void loop() {

 ...

 // on s’occupe de la LED en passant
 // sans jamais bloquer la boucle
 t = millis();
 if ((t – dernier_changt_LED) >= 1000) {
 // 1000 ms se sont ecoulees
 // il est temps de changer l’etat de la LED
 if (etat_LED == HIGH) {
 etat_LED = LOW;
 } else {
 etat_LED = HIGH;
 }
 digitalWrite(13, etat_LED);
 dernier_changt_LED = t;
 }

 ...
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 66

● On revient sur notre objectifOn revient sur notre objectif
– Quand on appuie sur le bouton poussoir, la

LED clignote 3 fois
– On laisse le programme « passant »

● 2 tests traversés à chaque boucle à la 2 tests traversés à chaque boucle à la
vitesse du microcontrôleurvitesse du microcontrôleur

● Plus compliqué que le programme1 Plus compliqué que le programme1
mais…mais…
– On peut surveiller autre chose
– Par exemple on peut envisager plusieurs

boutons poussoirs
– Chaque bouton peut faire clignoter sa LED

à un rythme qui lui est propre
Mieux

Programme2

unsigned long dernier_changt_LED, t;
boolean etat_LED, clignote;
int compteur;

void setup() {
 dernier_changt_LED = 0; t = 0; compteur = 0;
 pinMode(12, INPUT_PULLUP);
 pinMode(13, OUTPUT);
 etat_LED = LOW;
 digitalWrite(13, etat_LED);
 clignote = false;
}

void loop() {
 if ((clignote == false) && (digitalRead(12) == LOW)) {
 clignote = true;
 compteur = 0;
 }

 if (clignote == true) { // on s’occupe de la LED
 t = millis();
 if ((t - dernier_changt_LED) >= 1000) { // changt LED
 if (etat_LED == HIGH) {
 etat_LED = LOW;
 if (compteur >= 3) { // on vient d’eteindre la LED
 clignote = false; // et on a clignote 3 fois
 }
 } else {
 etat_LED = HIGH;
 compteur ++;
 }
 digitalWrite(13, etat_LED);
 dernier_changt_LED = t;
 }
 }
}

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 67

● Même chose en Même chose en
créant une classe LEDcréant une classe LED

 void demarre_clignotement() {
 if (clignote == false) {
 clignote = true;
 compteur = 0;
 }
 }

 void gere_en_passant() {
 unsigned long t;

 if (clignote == true) { // on s’occupe de la LED
 t = millis();
 if ((t - dernier_changt_LED) >= demie_periode) {
 if (etat_LED == HIGH) {
 etat_LED = LOW;
 if (compteur >= 3) { // on vient d’eteindre la LED
 clignote = false; // et on a clignote 3 fois
 }
 } else {
 etat_LED = HIGH;
 compteur ++;
 }
 digitalWrite(pin, etat_LED);
 dernier_changt_LED = t;
 }
 }
 }
};

class LED {
 public :
 unsigned long dernier_changt_LED;
 boolean etat_LED, clignote;
 int compteur, pin, demie_periode;

 LED () { // lancement auto
 // pour chaque instance
 dernier_changt_LED = 0;
 compteur = 0;
 clignote = false;
 demie_periode = 0;
 }

 void init_OUTPUT(int i, int j) {
 pin = i;
 demie_periode = j;
 pinMode(pin, OUTPUT);
 etat_LED = LOW;
 digitalWrite(pin, etat_LED);
 }

Programme3

Fonction 1

Fonction 2

Fonction 3
Constructeur

Variables
t : variable locale

(suite classe LED)

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 68

Directive « #include »
● La classe étant définieLa classe étant définie

– Le corps du programme est simplifié
– Extension facilitée

● Exemple : plusieurs boutons poussoirs qui font chacun
clignoter 3 fois une LED à des fréquences différentes

● Directive « #include Directive « #include ""fichierfichier" " »»
– Le préprocesseur intègre le contenu du fichier

comme s’il avait été écrit à cet endroit
– Allège visuellement le programme

● Note :Note :
– « #include "mon_fichier" » cherche mon_fichier à

coté du programme (en général « mon_fichier.h »,
« h » pour header

– « #include <fichier> » cherche le fichier dans les
répertoires où se trouvent les bibliothèques
standards

#include "ma_classe_LED.h"

LED ma_premiere_led; // creation instance avec
 // lancement constructeur

void setup() {
 pinMode(12, INPUT_PULLUP);
 ma_premiere_led.init_OUTPUT(13, 1000);
}

void loop() {
 if (digitalRead(12) == LOW) {
 ma_premiere_led.demarre_clignotement();
 }

 ma_premiere_led.gere_en_passant();
}

Programme3

suite et fin

Encore mieux

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 69

● Version finale « bouton poussoir & clignotement »Version finale « bouton poussoir & clignotement »
– Programme « passant »

– Utilisation de classes
● Classe LED
● Classe BOUTON_POUSSOIR

 void demarre_clignotement(int i, int j) {
 if (clignote == false) {
 clignote = true;
 nbre_clignotements = i;
 demie_periode = j;
 compteur = 0;
 etat_LED = LOW;
 }
 }

 void gere_en_passant() {
 unsigned long t;

 if (clignote == true) { // on s’occupe de la LED
 t = millis();
 if ((t - dernier_changt_LED) >= demie_periode) {
 if (etat_LED == HIGH) {
 etat_LED = LOW;
 if (compteur >= nbre_clignotements) {
 clignote = false;
 }
 } else {
 etat_LED = HIGH;
 compteur ++;
 }
 digitalWrite(pin, etat_LED);
 dernier_changt_LED = t;
 }
 }
 }
};

class LED {
 public :
 unsigned long dernier_changt_LED;
 boolean etat_LED, clignote;
 int compteur, pin, nbre_clignotements, demie_periode;

 LED () { // constructeur
 dernier_changt_LED = 0; compteur = 0;
 clignote = false;
 nbre_clignotements = 0; demie_periode = 0;
 }

 void init_OUTPUT(int i) {
 pin = i;
 pinMode(pin, OUTPUT);
 etat_LED = LOW;
 digitalWrite(pin, etat_LED);
 }

Programme4

« fichier_LED.h »

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 70

● Classe « BOUTON_POUSSOIR »Classe « BOUTON_POUSSOIR »
– Gère appui court et appui long
– Démarre le clignotement au relâchement du bouton

class BOUTON_POUSSOIR {
 public:
 unsigned long date_dernier_changement, duree_rebonds;
 unsigned long duree_mini_appui_long;
 int pin;
 boolean appui;

 BOUTON_POUSSOIR() {
 date_dernier_changement = 0; duree_rebonds = 250;
 duree_mini_appui_long = 1000; pin = 0; appui = false;
 }

 void init_INPUT(int i, unsigned long j, unsigned long k) {
 pin = i;
 duree_rebonds = j;
 duree_mini_appui_long = k;
 pinMode(pin, INPUT_PULLUP);
 }

 char gere_en_passant() {
 unsigned long t;
 char carac_retour;

 carac_retour = ' ';
 t = millis();
 if ((t - date_dernier_changement) >= duree_rebonds) {
 // Si on n'est plus dans les rebonds ...

 if ((appui == false) && (digitalRead(pin) == LOW)) {
 // bouton presse alors que le bouton etait relache
 appui = true;
 date_dernier_changement = t;
 } else {
 if ((appui == true) &&
 (digitalRead(pin) == HIGH)) {
 // bouton relache alors qu'il etait presse
 appui = false;
 if ((t - date_dernier_changement) <
 duree_mini_appui_long) {
 carac_retour = 'C'; // appui court
 } else {
 carac_retour = 'L'; // appui long
 }
 date_dernier_changement = t;
 }
 }
 }
 return (carac_retour);
 }
};

Programme4

« fichier_BOUTON_POUSSOIR.h »

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 71

● Version finaleVersion finale
– Appui court : clignote 3 fois lentement

– Appui long : clignote 10 fois rapidement

– Gère la problématique des rebonds

– Rend aisée l’utilisation de plusieurs boutons poussoirs
qui font clignoter simultanément plusieurs LEDs à des
rythmes différents

– Programme « passant » qui n’empêche pas la
surveillance d’autres capteurs

#include "fichier_LED.h"
#include "fichier_BOUTON_POUSSOIR.h"

LED ma_premiere_led; // creation instance
BOUTON_POUSSOIR mon_premier_bp; // creation instance

void setup() {
 pinMode(12, INPUT_PULLUP);
 ma_premiere_led.init_OUTPUT(13);
 mon_premier_bp.init_INPUT(12, 250, 1500);
}

void loop() {
 char c;

 c = mon_premier_bp.gere_en_passant();
 if (c == 'C') {
 ma_premiere_led.demarre_clignotement(3, 1000);
 } else {
 if (c == 'L') {
 ma_premiere_led.demarre_clignotement(10, 500);
 }
 }

 ma_premiere_led.gere_en_passant();
}

Corps du programme4

(suite et fin)

Février 2026 Microcontrôleurs – Arduino – Présentation libre de droits 72

L’afficheur 7 segments
● Afficheur 7 segmentsAfficheur 7 segments

– On peut utiliser 4 sorties binaires de l’Arduino pour commander un
afficheur 7 segments

– ► l’Arduino commande 4 entrées d’un décodeur BCD-to-7-segments

– ► le décodeur commande les 7 segments de l’afficheur à LEDs

● Les 4 sorties de l’Arduino forment un nombre en binaireLes 4 sorties de l’Arduino forment un nombre en binaire
– Le décodeur BCD-to-7-segments allume les segments en accord

avec le nombre formé par les 4 entrées

– Le décodeur SN74LS48 fournit des sorties à 5V pour allumer les
segments (GND commun)
► une sortie à 1 allume son segment

– Le décodeur SN74LS47 fournit des sorties à 0V pour « tirer » à zéro
volt les sorties des segments (+5V commun)
► sortie à 0 allume le segment (souvent plus robuste)

– Une résistance de 300Ω pour chaque segment permet de ne pas
détruire le décodeur et/ou l’afficheur

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72

